Analysis Beispiele

Berechne den Grenzwert Grenzwert von 1/h*((1+h)^3-1), wenn h gegen 0 geht
Schritt 1
Mutltipliziere mit .
Schritt 2
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.1.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.1.2.1.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.2.1.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1.1
Addiere und .
Schritt 2.1.2.3.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.1.2.3.1.3
Mutltipliziere mit .
Schritt 2.1.2.3.2
Subtrahiere von .
Schritt 2.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.1.3
Ersetze alle durch .
Schritt 2.3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.5
Addiere und .
Schritt 2.3.3.6
Mutltipliziere mit .
Schritt 2.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Addiere und .
Schritt 2.3.5.2
Schreibe als um.
Schritt 2.3.5.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.3.1
Wende das Distributivgesetz an.
Schritt 2.3.5.3.2
Wende das Distributivgesetz an.
Schritt 2.3.5.3.3
Wende das Distributivgesetz an.
Schritt 2.3.5.4
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.4.1.1
Mutltipliziere mit .
Schritt 2.3.5.4.1.2
Mutltipliziere mit .
Schritt 2.3.5.4.1.3
Mutltipliziere mit .
Schritt 2.3.5.4.1.4
Mutltipliziere mit .
Schritt 2.3.5.4.2
Addiere und .
Schritt 2.3.5.5
Wende das Distributivgesetz an.
Schritt 2.3.5.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.6.1
Mutltipliziere mit .
Schritt 2.3.5.6.2
Mutltipliziere mit .
Schritt 2.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Dividiere durch .
Schritt 3
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.5
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 4
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Mutltipliziere mit .
Schritt 5.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.1.3
Mutltipliziere mit .
Schritt 5.2
Addiere und .
Schritt 5.3
Addiere und .