Analysis Beispiele

Berechne den Grenzwert Grenzwert von (cos(x))/(x-pi/2), wenn x gegen pi/2 geht
Schritt 1
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2
Kombiniere und .
Schritt 1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache das Argument des Grenzwertes
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.1.2
Kombiniere und .
Schritt 2.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 3.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.3
Der genau Wert von ist .
Schritt 3.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.3.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.3.3.1.2
Forme den Ausdruck um.
Schritt 3.1.3.3.2
Subtrahiere von .
Schritt 3.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Die Ableitung von nach ist .
Schritt 3.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1
Bringe auf die linke Seite von .
Schritt 3.3.4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4.4
Mutltipliziere mit .
Schritt 3.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.6
Addiere und .
Schritt 4
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.2
Forme den Ausdruck um.
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Der genau Wert von ist .
Schritt 6.4
Mutltipliziere mit .