Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Schreibe als um.
Schritt 1.2
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2
Schritt 2.1
Bringe den Grenzwert in den Exponenten.
Schritt 2.2
Kombiniere und .
Schritt 3
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Berechne den Grenzwert des Zählers.
Schritt 3.1.2.1
Berechne den Grenzwert.
Schritt 3.1.2.1.1
Bringe den Grenzwert in den Logarithmus.
Schritt 3.1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 3.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.3
Vereinfache die Lösung.
Schritt 3.1.2.3.1
Der genau Wert von ist .
Schritt 3.1.2.3.2
Der natürliche Logarithmus von ist .
Schritt 3.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Die Ableitung von nach ist .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Die Ableitung von nach ist .
Schritt 3.3.4
Kombiniere und .
Schritt 3.3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 3.5
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 4.4
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 5
Schritt 5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Schritt 6.1
Der genau Wert von ist .
Schritt 6.2
Der genau Wert von ist .
Schritt 6.3
Dividiere durch .
Schritt 6.4
Mutltipliziere mit .
Schritt 6.5
Alles, was mit potenziert wird, ist .