Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Schritt 1.1.3.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.2
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 1.1.3.2.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.2.3
Der genau Wert von ist .
Schritt 1.1.3.3
Addiere und .
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Berechne .
Schritt 1.3.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.5.2
Die Ableitung von nach ist .
Schritt 1.3.6
Vereinfache.
Schritt 1.3.6.1
Vereine die Terme
Schritt 1.3.6.1.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.3.6.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.6.1.3
Subtrahiere von .
Schritt 1.3.6.1.4
Addiere und .
Schritt 1.3.6.2
Stelle die Terme um.
Schritt 1.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.5
Vereinige Faktoren.
Schritt 1.5.1
Kombiniere und .
Schritt 1.5.2
Kombiniere und .
Schritt 1.6
Kürze den gemeinsamen Faktor von .
Schritt 1.6.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.2
Dividiere durch .
Schritt 2
Schritt 2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Schritt 4.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2
Addiere und .
Schritt 4.3
Mutltipliziere mit .