Analysis Beispiele

Berechne den Grenzwert Grenzwert von (arctan(2x))/(3x), wenn x gegen 0 geht
Schritt 1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.2
Ersetze für und lasse sich nähern solange .
Schritt 2.1.2.3
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3.2
Der genau Wert von ist .
Schritt 2.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Die Ableitung von nach ist .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Faktorisiere aus heraus.
Schritt 2.3.4
Wende die Produktregel auf an.
Schritt 2.3.5
Potenziere mit .
Schritt 2.3.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.7
Kombiniere und .
Schritt 2.3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.9
Mutltipliziere mit .
Schritt 2.3.10
Stelle die Terme um.
Schritt 2.3.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.5
Mutltipliziere mit .
Schritt 3
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.6
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 5.2.3
Addiere und .
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 5.4
Mutltipliziere mit .
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: