Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Summe einer unendlichen geometrischen Reihe kann mit der Formel gefunden werden, wobei der erste Term und das Verhältnis zwischen den aufeinanderfolgenden Termen ist.
Schritt 2
Schritt 2.1
Setze und in die Formel für ein.
Schritt 2.2
Vereinfache.
Schritt 2.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.1.2.1
Multipliziere mit .
Schritt 2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2.3
Forme den Ausdruck um.
Schritt 2.2.1.2.4
Dividiere durch .
Schritt 2.2.2
Addiere und .
Schritt 2.2.3
Vereinfache jeden Term.
Schritt 2.2.3.1
Wende das Distributivgesetz an.
Schritt 2.2.3.2
Mutltipliziere mit .
Schritt 2.2.4
Subtrahiere von .
Schritt 2.2.5
Addiere und .
Schritt 2.2.6
Vereinfache.
Schritt 3
Since , the series converges.
Schritt 4
Schritt 4.1
Setze für in ein.
Schritt 4.2
Vereinfache.
Schritt 4.2.1
Subtrahiere von .
Schritt 4.2.2
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 4.2.2.1
Wende die Produktregel auf an.
Schritt 4.2.2.2
Wende die Produktregel auf an.
Schritt 4.2.3
Alles, was mit potenziert wird, ist .
Schritt 4.2.4
Mutltipliziere mit .
Schritt 4.2.5
Alles, was mit potenziert wird, ist .
Schritt 4.2.6
Alles, was mit potenziert wird, ist .
Schritt 4.2.7
Dividiere durch .
Schritt 5
Ersetze die Werte des Verhältnisses und des ersten Terms in der Summenformel.
Schritt 6
Schritt 6.1
Vereinfache den Nenner.
Schritt 6.1.1
Multipliziere .
Schritt 6.1.1.1
Mutltipliziere mit .
Schritt 6.1.1.2
Mutltipliziere mit .
Schritt 6.1.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 6.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.4
Addiere und .
Schritt 6.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 6.3
Mutltipliziere mit .
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: