Analysis Beispiele

Berechne den Grenzwert Grenzwert von xsec(x)^2-tan(x)^2-1, wenn x gegen 1 geht
Schritt 1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 4
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 5
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 6
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 8
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 8.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 8.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 9
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Faktorisiere aus heraus.
Schritt 9.2
Faktorisiere aus heraus.
Schritt 9.3
Faktorisiere aus heraus.
Schritt 9.4
Wende den trigonometrischen Pythagoras an.
Schritt 9.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.1
Mutltipliziere mit .
Schritt 9.5.2
Mutltipliziere mit .
Schritt 9.6
Subtrahiere von .