Analysis Beispiele

Berechne den Grenzwert Grenzwert von (x^(3a)-3ax+3a-1)/((x-1)^2), wenn x gegen 1 geht
Schritt 1
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.2.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.6
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.6.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.6.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.7
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.7.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.7.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.1.2.7.1.2
Mutltipliziere mit .
Schritt 1.1.2.7.1.3
Mutltipliziere mit .
Schritt 1.1.2.7.1.4
Mutltipliziere mit .
Schritt 1.1.2.7.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.7.2.1
Addiere und .
Schritt 1.1.2.7.2.2
Addiere und .
Schritt 1.1.2.7.2.3
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1.1
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.3.1.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.3.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Subtrahiere von .
Schritt 1.1.3.3.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.1.3.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4.3
Mutltipliziere mit .
Schritt 1.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.7.1
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.7.1.1
Addiere und .
Schritt 1.3.7.1.2
Addiere und .
Schritt 1.3.7.2
Stelle die Terme um.
Schritt 1.3.7.3
Stelle die Faktoren in um.
Schritt 1.3.8
Schreibe als um.
Schritt 1.3.9
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.9.1
Wende das Distributivgesetz an.
Schritt 1.3.9.2
Wende das Distributivgesetz an.
Schritt 1.3.9.3
Wende das Distributivgesetz an.
Schritt 1.3.10
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.10.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.10.1.1
Mutltipliziere mit .
Schritt 1.3.10.1.2
Bringe auf die linke Seite von .
Schritt 1.3.10.1.3
Schreibe als um.
Schritt 1.3.10.1.4
Schreibe als um.
Schritt 1.3.10.1.5
Mutltipliziere mit .
Schritt 1.3.10.2
Subtrahiere von .
Schritt 1.3.11
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.12
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.13
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.14
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.15
Mutltipliziere mit .
Schritt 1.3.16
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.17
Addiere und .
Schritt 2
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.2.1.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.1.2.1.4
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.3.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.1.2.3.1.2
Mutltipliziere mit .
Schritt 2.1.2.3.2
Addiere und .
Schritt 2.1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.1.3.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.3.1.1
Mutltipliziere mit .
Schritt 2.1.3.3.1.2
Mutltipliziere mit .
Schritt 2.1.3.3.2
Subtrahiere von .
Schritt 2.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4.3
Subtrahiere von .
Schritt 2.3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Addiere und .
Schritt 2.3.5.2
Stelle die Faktoren von um.
Schritt 2.3.6
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.7
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.7.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.7.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.7.3
Mutltipliziere mit .
Schritt 2.3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.9
Addiere und .
Schritt 3
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 4
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 5.2
Mutltipliziere mit .