Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Vereinfache den Ausdruck.
Schritt 1.2.6.1
Addiere und .
Schritt 1.2.6.2
Bringe auf die linke Seite von .
Schritt 1.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.10
Mutltipliziere mit .
Schritt 1.2.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.12
Vereinfache den Ausdruck.
Schritt 1.2.12.1
Addiere und .
Schritt 1.2.12.2
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Vereinfache den Zähler.
Schritt 1.3.3.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 1.3.3.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 1.3.3.1.2
Subtrahiere von .
Schritt 1.3.3.1.3
Addiere und .
Schritt 1.3.3.2
Vereinfache jeden Term.
Schritt 1.3.3.2.1
Mutltipliziere mit .
Schritt 1.3.3.2.2
Mutltipliziere mit .
Schritt 1.3.3.3
Addiere und .
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Faktorregel.
Schritt 2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 2.1.2.1
Schreibe als um.
Schritt 2.1.2.2
Multipliziere die Exponenten in .
Schritt 2.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2.2
Mutltipliziere mit .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere.
Schritt 2.3.1
Mutltipliziere mit .
Schritt 2.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.7
Vereinfache den Ausdruck.
Schritt 2.3.7.1
Addiere und .
Schritt 2.3.7.2
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Vereine die Terme
Schritt 2.4.2.1
Kombiniere und .
Schritt 2.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Faktorregel.
Schritt 3.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 3.1.2.1
Schreibe als um.
Schritt 3.1.2.2
Multipliziere die Exponenten in .
Schritt 3.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2.2.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.5
Mutltipliziere mit .
Schritt 3.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.7
Vereinfache den Ausdruck.
Schritt 3.3.7.1
Addiere und .
Schritt 3.3.7.2
Mutltipliziere mit .
Schritt 3.4
Vereinfache.
Schritt 3.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.4.2
Kombiniere und .
Schritt 4
Schritt 4.1
Differenziere unter Anwendung der Faktorregel.
Schritt 4.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2
Wende die grundlegenden Potenzregeln an.
Schritt 4.1.2.1
Schreibe als um.
Schritt 4.1.2.2
Multipliziere die Exponenten in .
Schritt 4.1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.3
Ersetze alle durch .
Schritt 4.3
Differenziere.
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.5
Mutltipliziere mit .
Schritt 4.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.3.7
Vereinfache den Ausdruck.
Schritt 4.3.7.1
Addiere und .
Schritt 4.3.7.2
Mutltipliziere mit .
Schritt 4.4
Vereinfache.
Schritt 4.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.4.2
Vereine die Terme
Schritt 4.4.2.1
Kombiniere und .
Schritt 4.4.2.2
Ziehe das Minuszeichen vor den Bruch.