Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Mutltipliziere mit .
Schritt 1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.6
Vereinfache den Ausdruck.
Schritt 1.2.6.1
Addiere und .
Schritt 1.2.6.2
Bringe auf die linke Seite von .
Schritt 1.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.10
Vereinfache den Ausdruck.
Schritt 1.2.10.1
Addiere und .
Schritt 1.2.10.2
Mutltipliziere mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Vereinfache den Zähler.
Schritt 1.3.3.1
Vereinfache jeden Term.
Schritt 1.3.3.1.1
Mutltipliziere mit .
Schritt 1.3.3.1.2
Mutltipliziere mit .
Schritt 1.3.3.1.3
Mutltipliziere mit .
Schritt 1.3.3.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 1.3.3.2.1
Subtrahiere von .
Schritt 1.3.3.2.2
Addiere und .
Schritt 1.3.3.3
Subtrahiere von .
Schritt 1.4
Bestimme die Ableitung bei .
Schritt 1.5
Vereinfache.
Schritt 1.5.1
Vereinfache den Nenner.
Schritt 1.5.1.1
Addiere und .
Schritt 1.5.1.2
Potenziere mit .
Schritt 1.5.2
Kürze den gemeinsamen Teiler von und .
Schritt 1.5.2.1
Faktorisiere aus heraus.
Schritt 1.5.2.2
Kürze die gemeinsamen Faktoren.
Schritt 1.5.2.2.1
Faktorisiere aus heraus.
Schritt 1.5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.2.2.3
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Vereinfache .
Schritt 2.3.1.1
Forme um.
Schritt 2.3.1.2
Vereinfache durch Addieren von Nullen.
Schritt 2.3.1.3
Wende das Distributivgesetz an.
Schritt 2.3.1.4
Kombiniere und .
Schritt 2.3.1.5
Kombiniere und .
Schritt 2.3.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.2.4
Addiere und .
Schritt 2.3.3
Stelle die Terme um.
Schritt 3