Analysis Beispiele

Bestimme die Tangente an dem Punkt 4xy^3+5xy=36 , (4,1)
,
Schritt 1
Finde die erste Ableitung und werte sie bei und aus, um die Steigung der Tangentenlinie zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere beide Seiten der Gleichung.
Schritt 1.2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.3.3
Ersetze alle durch .
Schritt 1.2.2.4
Schreibe als um.
Schritt 1.2.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.2.6
Bringe auf die linke Seite von .
Schritt 1.2.2.7
Mutltipliziere mit .
Schritt 1.2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2.3.3
Schreibe als um.
Schritt 1.2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.5
Mutltipliziere mit .
Schritt 1.2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Wende das Distributivgesetz an.
Schritt 1.2.4.2
Wende das Distributivgesetz an.
Schritt 1.2.4.3
Mutltipliziere mit .
Schritt 1.2.4.4
Stelle die Terme um.
Schritt 1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 1.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.5.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.2.1
Faktorisiere aus heraus.
Schritt 1.5.2.2
Faktorisiere aus heraus.
Schritt 1.5.2.3
Faktorisiere aus heraus.
Schritt 1.5.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.1
Teile jeden Ausdruck in durch .
Schritt 1.5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.3.2.1.2
Forme den Ausdruck um.
Schritt 1.5.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.3.2.2.2
Dividiere durch .
Schritt 1.5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.3.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.5.3.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6
Ersetze durch .
Schritt 1.7
Berechne bei und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.2
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.7.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.7.3.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.3.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.7.3.2.2
Mutltipliziere mit .
Schritt 1.7.3.2.3
Mutltipliziere mit .
Schritt 1.7.3.3
Subtrahiere von .
Schritt 1.7.4
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.4.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.7.4.2
Mutltipliziere mit .
Schritt 1.7.4.3
Addiere und .
Schritt 1.7.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.5.1
Mutltipliziere mit .
Schritt 1.7.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Steigung und Punktwerte in die Punkt-Steigungs-Formel einfügen und für lösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze die Steigung und einen gegebenen Punkt , um und in der Punkt-Steigungs-Form zu substituieren, welche von der Gleichung für die Steigung abgeleitet ist.
Schritt 2.2
Vereinfache die Gleichung und behalte die Punkt-Richtungs-Form bei.
Schritt 2.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Forme um.
Schritt 2.3.1.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Wende das Distributivgesetz an.
Schritt 2.3.1.2.2
Kombiniere und .
Schritt 2.3.1.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.1.2.3.2
Faktorisiere aus heraus.
Schritt 2.3.1.2.3.3
Faktorisiere aus heraus.
Schritt 2.3.1.2.3.4
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.3.5
Forme den Ausdruck um.
Schritt 2.3.1.2.4
Kombiniere und .
Schritt 2.3.1.2.5
Mutltipliziere mit .
Schritt 2.3.1.3
Bringe auf die linke Seite von .
Schritt 2.3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.2.4
Addiere und .
Schritt 2.3.3
Schreibe in -Form.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Stelle die Terme um.
Schritt 2.3.3.2
Entferne die Klammern.
Schritt 3