Analysis Beispiele

Stelle graphisch dar tan( natürlicher Logarithmus von x)
Schritt 1
Finde die Asymptoten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Für jedes existieren vertikale Asymptoten bei , wobei eine Ganzzahl ist. Benutze die Grundperiode für , , um die vertikalen Asymptoten für zu bestimmen. Setze das Innere der Tangens-Funktion, , für gleich , um herauszufinden, wo die vertikale Asymptote für auftritt.
Schritt 1.2
Setze das Innere der Tangensfunktion gleich .
Schritt 1.3
Die fundamentale Periode für tritt auf bei , wobei und vertikale Asymptoten sind.
Schritt 1.4
Ermittle die Periode , um zu bestimmen, an welchen Stellen die vertikalen Asymptoten existieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.4.2
Dividiere durch .
Schritt 1.5
Die vertikalen Asymptoten für treten bei , und allen auf, wobei eine ganze Zahl ist.
Schritt 1.6
Bei Tangens- und Kotangensfunktionen gibt es nur vertikale Asymptoten.
Vertikale Asymptoten: für jede Ganzzahl
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Vertikale Asymptoten: für jede Ganzzahl
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Schritt 2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Der natürliche Logarithmus von ist .
Schritt 2.2.2
Der genau Wert von ist .
Schritt 2.2.3
Die endgültige Lösung ist .
Schritt 2.3
Konvertiere nach Dezimal.
Schritt 3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Berechne .
Schritt 3.2.2
Die endgültige Lösung ist .
Schritt 4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Berechne .
Schritt 4.2.2
Die endgültige Lösung ist .
Schritt 5
Die logarithmische Funktion kann graphisch dargestellt werden mithilfe der vertikalen Asymptote bei und den Punkten .
Vertikale Asymptote:
Schritt 6