Analysis Beispiele

Stelle graphisch dar natürlicher Logarithmus von x^2+64
Schritt 1
Finde die Asymptoten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze das Argument des Logarithmus gleich null.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 1.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Schreibe als um.
Schritt 1.2.3.2
Schreibe als um.
Schritt 1.2.3.3
Schreibe als um.
Schritt 1.2.3.4
Schreibe als um.
Schritt 1.2.3.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.2.3.6
Bringe auf die linke Seite von .
Schritt 1.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.3
Die vertikale Asymptote tritt bei auf.
Vertikale Asymptote:
Vertikale Asymptote:
Schritt 2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 2.2.2
Addiere und .
Schritt 2.2.3
Die endgültige Lösung ist .
Schritt 2.3
Konvertiere nach Dezimal.
Schritt 3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Potenziere mit .
Schritt 3.2.2
Addiere und .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 3.3
Konvertiere nach Dezimal.
Schritt 4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Potenziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Konvertiere nach Dezimal.
Schritt 5
Die logarithmische Funktion kann graphisch dargestellt werden mithilfe der vertikalen Asymptote bei und den Punkten .
Vertikale Asymptote:
Schritt 6