Analysis Beispiele

Stelle graphisch dar natürlicher Logarithmus von 2x+3
Schritt 1
Finde die Asymptoten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze das Argument des Logarithmus gleich null.
Schritt 1.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.2.1.2
Dividiere durch .
Schritt 1.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3
Die vertikale Asymptote tritt bei auf.
Vertikale Asymptote:
Vertikale Asymptote:
Schritt 2
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Mutltipliziere mit .
Schritt 2.2.2
Addiere und .
Schritt 2.2.3
Die endgültige Lösung ist .
Schritt 2.3
Konvertiere nach Dezimal.
Schritt 3
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 3.2.3
Die endgültige Lösung ist .
Schritt 3.3
Konvertiere nach Dezimal.
Schritt 4
Bestimme den Punkt bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 4.2.3
Die endgültige Lösung ist .
Schritt 4.3
Konvertiere nach Dezimal.
Schritt 5
Die logarithmische Funktion kann graphisch dargestellt werden mithilfe der vertikalen Asymptote bei und den Punkten .
Vertikale Asymptote:
Schritt 6