Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Da , wenn von links und , wenn von rechts, dann ist eine vertikale Asymptote.
Schritt 1.3
Berechne , um die horizontale Asymptote zu finden.
Schritt 1.3.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.2
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Gib die horizontalen Asymptoten an:
Schritt 1.5
Es sind keine schiefen Asymptoten für logarithmische und trigonometrische Funktionen vorhanden.
Keine schiefen Asymptoten
Schritt 1.6
Das ist die Menge aller Asymptoten.
Vertikale Asymptoten:
Horizontale Asymptoten:
Vertikale Asymptoten:
Horizontale Asymptoten:
Schritt 2
Schritt 2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 2.2
Vereinfache das Ergebnis.
Schritt 2.2.1
Addiere und .
Schritt 2.2.2
Die endgültige Lösung ist .
Schritt 2.3
Konvertiere nach Dezimal.
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Addiere und .
Schritt 3.2.2
Die endgültige Lösung ist .
Schritt 3.3
Konvertiere nach Dezimal.
Schritt 4
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Vereinfache das Ergebnis.
Schritt 4.2.1
Addiere und .
Schritt 4.2.2
Schreibe als um.
Schritt 4.2.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 4.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 4.2.4.1
Faktorisiere aus heraus.
Schritt 4.2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 4.2.4.2.1
Faktorisiere aus heraus.
Schritt 4.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2.3
Forme den Ausdruck um.
Schritt 4.2.5
Die endgültige Lösung ist .
Schritt 4.3
Konvertiere nach Dezimal.
Schritt 5
Die logarithmische Funktion kann graphisch dargestellt werden mithilfe der vertikalen Asymptote bei und den Punkten .
Vertikale Asymptote:
Schritt 6