Analysis Beispiele

2nd 도함수 구하기 2csc(x)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Mutltipliziere mit .
Schritt 1.3.2
Stelle die Faktoren von um.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Die Ableitung von nach ist .
Schritt 2.4
Potenziere mit .
Schritt 2.5
Potenziere mit .
Schritt 2.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.7
Addiere und .
Schritt 2.8
Die Ableitung von nach ist .
Schritt 2.9
Potenziere mit .
Schritt 2.10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.11
Addiere und .
Schritt 2.12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.12.1
Wende das Distributivgesetz an.
Schritt 2.12.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 2.12.2.1
Mutltipliziere mit .
Schritt 2.12.2.2
Mutltipliziere mit .
Schritt 2.12.3
Stelle die Terme um.
Schritt 3
Bestimme die dritte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.2.3
Die Ableitung von nach ist .
Schritt 3.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.4.3
Ersetze alle durch .
Schritt 3.2.5
Die Ableitung von nach ist .
Schritt 3.2.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.6.1
Bewege .
Schritt 3.2.6.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.6.2.1
Potenziere mit .
Schritt 3.2.6.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.6.3
Addiere und .
Schritt 3.2.7
Mutltipliziere mit .
Schritt 3.2.8
Potenziere mit .
Schritt 3.2.9
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.10
Addiere und .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Die Ableitung von nach ist .
Schritt 3.3.4
Mutltipliziere mit .
Schritt 3.3.5
Potenziere mit .
Schritt 3.3.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.7
Addiere und .
Schritt 3.3.8
Mutltipliziere mit .
Schritt 3.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Wende das Distributivgesetz an.
Schritt 3.4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Mutltipliziere mit .
Schritt 3.4.2.2
Mutltipliziere mit .
Schritt 3.4.2.3
Stelle die Faktoren von um.
Schritt 3.4.2.4
Subtrahiere von .
Schritt 4
Bestimme die vierte Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.2.3
Die Ableitung von nach ist .
Schritt 4.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2.4.3
Ersetze alle durch .
Schritt 4.2.5
Die Ableitung von nach ist .
Schritt 4.2.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.1
Bewege .
Schritt 4.2.6.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.2.1
Potenziere mit .
Schritt 4.2.6.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.6.3
Addiere und .
Schritt 4.2.7
Mutltipliziere mit .
Schritt 4.2.8
Potenziere mit .
Schritt 4.2.9
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.10
Addiere und .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.3.3
Die Ableitung von nach ist .
Schritt 4.3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.4.3
Ersetze alle durch .
Schritt 4.3.5
Die Ableitung von nach ist .
Schritt 4.3.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.6.1
Bewege .
Schritt 4.3.6.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.6.3
Addiere und .
Schritt 4.3.7
Bringe auf die linke Seite von .
Schritt 4.3.8
Schreibe als um.
Schritt 4.3.9
Mutltipliziere mit .
Schritt 4.3.10
Potenziere mit .
Schritt 4.3.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.12
Addiere und .
Schritt 4.3.13
Potenziere mit .
Schritt 4.3.14
Potenziere mit .
Schritt 4.3.15
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.3.16
Addiere und .
Schritt 4.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Wende das Distributivgesetz an.
Schritt 4.4.2
Wende das Distributivgesetz an.
Schritt 4.4.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.1
Mutltipliziere mit .
Schritt 4.4.3.2
Mutltipliziere mit .
Schritt 4.4.3.3
Mutltipliziere mit .
Schritt 4.4.3.4
Mutltipliziere mit .
Schritt 4.4.3.5
Stelle die Faktoren von um.
Schritt 4.4.3.6
Addiere und .