Analysis Beispiele

z 구하기 logarithmische Basis 8 von z-6=2- logarithmische Basis 8 von z+15
Schritt 1
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 2
Wende die Produktregel für Logarithmen an, .
Schritt 3
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Wende das Distributivgesetz an.
Schritt 4
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.2
Bringe auf die linke Seite von .
Schritt 4.1.3
Mutltipliziere mit .
Schritt 4.2
Subtrahiere von .
Schritt 5
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Potenziere mit .
Schritt 6.3
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.2
Subtrahiere von .
Schritt 6.4
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 6.5
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 6.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1.1
Potenziere mit .
Schritt 6.6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1.2.1
Mutltipliziere mit .
Schritt 6.6.1.2.2
Mutltipliziere mit .
Schritt 6.6.1.3
Addiere und .
Schritt 6.6.2
Mutltipliziere mit .
Schritt 6.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 7
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: