Analysis Beispiele

x 구하기 sec(x)tan(x)=0
Schritt 1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze gleich .
Schritt 2.2
Der Wertebereich des Sekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze gleich .
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Der genau Wert von ist .
Schritt 3.2.3
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 3.2.4
Addiere und .
Schritt 3.2.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 3.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.5.4
Dividiere durch .
Schritt 3.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 4
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl
Schritt 5
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl