Analysis Beispiele

x 구하기 e^(2x)-3e^x+2<0
Schritt 1
Schreibe als Potenz um.
Schritt 2
Ersetze durch .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Setze gleich .
Schritt 3.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Setze für in ein.
Schritt 5
Löse .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 5.3
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 5.3.2
Der natürliche Logarithmus von ist .
Schritt 5.3.3
Mutltipliziere mit .
Schritt 6
Setze für in ein.
Schritt 7
Löse .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Schreibe die Gleichung als um.
Schritt 7.2
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 7.3
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 7.3.2
Der natürliche Logarithmus von ist .
Schritt 7.3.3
Mutltipliziere mit .
Schritt 7.4
Der natürliche Logarithmus von ist .
Schritt 8
Liste die Lösungen auf, die die Gleichung erfüllen.
Schritt 9
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 10
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.1.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 10.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 10.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 10.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 10.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 10.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 11
Die Lösung besteht aus allen wahren Intervallen.
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 13