Analysis Beispiele

x 구하기 (x^2)/9=(x^2)/36+h
Schritt 1
Multipliziere beide Seiten mit .
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.1.2
Forme den Ausdruck um.
Schritt 2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2.3
Forme den Ausdruck um.
Schritt 2.2.1.3
Bringe auf die linke Seite von .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.1.3
Kombiniere und .
Schritt 3.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.1.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.5.1
Bringe auf die linke Seite von .
Schritt 3.1.5.2
Subtrahiere von .
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1
Kombinieren.
Schritt 3.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.3.2
Dividiere durch .
Schritt 3.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1.1
Faktorisiere aus heraus.
Schritt 3.3.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.1.3
Forme den Ausdruck um.
Schritt 3.3.2.1.2
Mutltipliziere mit .
Schritt 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1.1
Faktorisiere aus heraus.
Schritt 3.5.1.2
Schreibe als um.
Schritt 3.5.1.3
Füge Klammern hinzu.
Schritt 3.5.2
Ziehe Terme aus der Wurzel heraus.
Schritt 3.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.