Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.2
Schreibe als um.
Schritt 2.3
Faktorisiere.
Schritt 2.3.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.3.2
Entferne unnötige Klammern.
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Setze gleich .
Schritt 5
Schritt 5.1
Setze gleich .
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Schritt 6.1
Setze gleich .
Schritt 6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 9
Schritt 9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.2.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 9.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.4.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 9.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Wahr
Falsch
Schritt 10
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 12