Analysis Beispiele

미분 구하기 - d/dw (w-5)/(w^5)
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2
Mutltipliziere mit .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Addiere und .
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.7
Vereinfache durch Herausfaktorisieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.1
Mutltipliziere mit .
Schritt 2.7.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.7.2.1
Faktorisiere aus heraus.
Schritt 2.7.2.2
Faktorisiere aus heraus.
Schritt 2.7.2.3
Faktorisiere aus heraus.
Schritt 3
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3
Forme den Ausdruck um.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Subtrahiere von .
Schritt 4.3
Faktorisiere aus heraus.
Schritt 4.4
Schreibe als um.
Schritt 4.5
Faktorisiere aus heraus.
Schritt 4.6
Schreibe als um.
Schritt 4.7
Ziehe das Minuszeichen vor den Bruch.