Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Schritt 3.1
Multipliziere die Exponenten in .
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 6
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze den gemeinsamen Faktor.
Schritt 6.3
Forme den Ausdruck um.
Schritt 7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 10
Schritt 10.1
Addiere und .
Schritt 10.2
Mutltipliziere mit .
Schritt 11
Potenziere mit .
Schritt 12
Potenziere mit .
Schritt 13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 14
Addiere und .
Schritt 15
Subtrahiere von .
Schritt 16
Kombiniere und .
Schritt 17
Kombiniere und .
Schritt 18
Schritt 18.1
Wende das Distributivgesetz an.
Schritt 18.2
Wende das Distributivgesetz an.
Schritt 18.3
Vereinfache jeden Term.
Schritt 18.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 18.3.2
Mutltipliziere mit .
Schritt 18.3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 18.3.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 18.3.4.1
Bewege .
Schritt 18.3.4.2
Mutltipliziere mit .
Schritt 18.3.4.2.1
Potenziere mit .
Schritt 18.3.4.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 18.3.4.3
Addiere und .
Schritt 18.4
Stelle die Terme um.
Schritt 18.5
Faktorisiere aus heraus.
Schritt 18.5.1
Faktorisiere aus heraus.
Schritt 18.5.2
Faktorisiere aus heraus.
Schritt 18.5.3
Faktorisiere aus heraus.