Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Kombiniere und .
Schritt 2.8
Mutltipliziere mit .
Schritt 2.9
Mutltipliziere mit .
Schritt 2.10
Mutltipliziere mit .
Schritt 2.11
Kürze den gemeinsamen Faktor.
Schritt 2.12
Dividiere durch .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2
Schreibe als um.
Schritt 4.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 4.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3.3
Ersetze alle durch .
Schritt 4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.5
Multipliziere die Exponenten in .
Schritt 4.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.5.2
Mutltipliziere mit .
Schritt 4.6
Mutltipliziere mit .
Schritt 4.7
Potenziere mit .
Schritt 4.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.9
Subtrahiere von .
Schritt 4.10
Mutltipliziere mit .
Schritt 5
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6
Schritt 6.1
Vereine die Terme
Schritt 6.1.1
Kombiniere und .
Schritt 6.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2
Stelle die Terme um.