Analysis Beispiele

미분 구하기 - d/dx e^(2x)sin(2x)cos(x)
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Die Ableitung von nach ist .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Mutltipliziere mit .
Schritt 5.3.2
Bringe auf die linke Seite von .
Schritt 6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 6.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 6.3
Ersetze alle durch .
Schritt 7
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Bringe auf die linke Seite von .
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Wende das Distributivgesetz an.
Schritt 8.2
Bringe auf die linke Seite von .
Schritt 8.3
Stelle die Terme um.