Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4
Die Ableitung von nach ist .
Schritt 5
Die Ableitung von nach ist .
Schritt 6
Kombiniere und .
Schritt 7
Schritt 7.1
Wende das Distributivgesetz an.
Schritt 7.2
Wende das Distributivgesetz an.
Schritt 7.3
Vereinfache jeden Term.
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Multipliziere .
Schritt 7.3.2.1
Mutltipliziere mit .
Schritt 7.3.2.2
Mutltipliziere mit .
Schritt 7.4
Stelle die Terme um.
Schritt 7.5
Faktorisiere aus heraus.
Schritt 7.5.1
Faktorisiere aus heraus.
Schritt 7.5.2
Faktorisiere aus heraus.
Schritt 7.5.3
Faktorisiere aus heraus.
Schritt 7.5.4
Faktorisiere aus heraus.
Schritt 7.5.5
Faktorisiere aus heraus.
Schritt 7.5.6
Faktorisiere aus heraus.
Schritt 7.5.7
Faktorisiere aus heraus.
Schritt 7.6
Faktorisiere aus heraus.
Schritt 7.7
Faktorisiere aus heraus.
Schritt 7.8
Faktorisiere aus heraus.
Schritt 7.9
Faktorisiere aus heraus.
Schritt 7.10
Faktorisiere aus heraus.
Schritt 7.11
Faktorisiere aus heraus.
Schritt 7.12
Faktorisiere aus heraus.
Schritt 7.13
Schreibe als um.
Schritt 7.14
Ziehe das Minuszeichen vor den Bruch.