Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Ersetze alle durch .
Schritt 1.1.3
Differenziere.
Schritt 1.1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.3.4
Vereinfache den Ausdruck.
Schritt 1.1.3.4.1
Addiere und .
Schritt 1.1.3.4.2
Mutltipliziere mit .
Schritt 1.1.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Setze den Zähler gleich Null.
Schritt 2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 3
Es gibt keine Werte von im Definitionsbereich, wo die Ableitung ist oder nicht definiert ist.
Keine kritischen Punkte gefunden
Schritt 4
Schritt 4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.2
Löse nach auf.
Schritt 4.2.1
Setze gleich .
Schritt 4.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache den Nenner.
Schritt 6.2.1.1
Subtrahiere von .
Schritt 6.2.1.2
Potenziere mit .
Schritt 6.2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.2
Forme den Ausdruck um.
Schritt 6.2.2.2
Mutltipliziere mit .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache den Nenner.
Schritt 7.2.1.1
Subtrahiere von .
Schritt 7.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 7.2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 7.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.1.2
Forme den Ausdruck um.
Schritt 7.2.2.2
Mutltipliziere mit .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Abfallend im Intervall:
Schritt 9