Analysis Beispiele

미분 구하기 - d/d@VAR f(x)=5x(x^4+1)^5
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Ersetze alle durch .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Addiere und .
Schritt 4.4.2
Mutltipliziere mit .
Schritt 5
Potenziere mit .
Schritt 6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7
Addiere und .
Schritt 8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9
Mutltipliziere mit .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Wende das Distributivgesetz an.
Schritt 10.2
Mutltipliziere mit .
Schritt 10.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1
Faktorisiere aus heraus.
Schritt 10.3.2
Faktorisiere aus heraus.
Schritt 10.3.3
Faktorisiere aus heraus.
Schritt 10.4
Addiere und .