Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Multipliziere, um den Zähler zu rationalisieren.
Schritt 2
Schritt 2.1
Multipliziere den Zähler unter Verwendung der FOIL-Methode aus.
Schritt 2.2
Vereinfache.
Schritt 2.2.1
Subtrahiere von .
Schritt 2.2.2
Addiere und .
Schritt 3
Schritt 3.1
Vereinfache jeden Term.
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.1.1
Faktorisiere aus heraus.
Schritt 3.1.1.2
Faktorisiere aus heraus.
Schritt 3.1.1.3
Faktorisiere aus heraus.
Schritt 3.1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 3.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 5
Schritt 5.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.2
Forme den Ausdruck um.
Schritt 5.2
Vereinfache jeden Term.
Schritt 5.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 5.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 7
Schritt 7.1
Kürze den gemeinsamen Faktor von .
Schritt 7.2
Vereinfache jeden Term.
Schritt 7.2.1
Kürze den gemeinsamen Faktor von .
Schritt 7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.2
Forme den Ausdruck um.
Schritt 7.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7.4
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 7.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 7.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7.7
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 8
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 9
Schritt 9.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9.3
Vereinfache die Lösung.
Schritt 9.3.1
Dividiere durch .
Schritt 9.3.2
Vereinfache den Nenner.
Schritt 9.3.2.1
Mutltipliziere mit .
Schritt 9.3.2.2
Addiere und .
Schritt 9.3.2.3
Jede Wurzel von ist .
Schritt 9.3.2.4
Addiere und .
Schritt 9.3.3
Kombiniere und .
Schritt 9.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 10
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: