Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Differenziere.
Schritt 5.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2
Berechne .
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Faktorisiere die linke Seite der Gleichung.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.1.1
Faktorisiere aus heraus.
Schritt 6.2.1.2
Faktorisiere aus heraus.
Schritt 6.2.1.3
Faktorisiere aus heraus.
Schritt 6.2.2
Schreibe als um.
Schritt 6.2.3
Faktorisiere.
Schritt 6.2.3.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6.2.3.2
Entferne unnötige Klammern.
Schritt 6.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.4
Setze gleich .
Schritt 6.5
Setze gleich und löse nach auf.
Schritt 6.5.1
Setze gleich .
Schritt 6.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.6
Setze gleich und löse nach auf.
Schritt 6.6.1
Setze gleich .
Schritt 6.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Schritt 10.1
Vereinfache jeden Term.
Schritt 10.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.2
Mutltipliziere mit .
Schritt 10.2
Subtrahiere von .
Schritt 11
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
Vereinfache jeden Term.
Schritt 12.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.1.3
Mutltipliziere mit .
Schritt 12.2.2
Addiere und .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Schritt 14.1
Vereinfache jeden Term.
Schritt 14.1.1
Potenziere mit .
Schritt 14.1.2
Mutltipliziere mit .
Schritt 14.2
Subtrahiere von .
Schritt 15
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 16
Schritt 16.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 16.2
Vereinfache das Ergebnis.
Schritt 16.2.1
Vereinfache jeden Term.
Schritt 16.2.1.1
Potenziere mit .
Schritt 16.2.1.2
Potenziere mit .
Schritt 16.2.1.3
Mutltipliziere mit .
Schritt 16.2.2
Subtrahiere von .
Schritt 16.2.3
Die endgültige Lösung ist .
Schritt 17
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 18
Schritt 18.1
Vereinfache jeden Term.
Schritt 18.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 18.1.2
Mutltipliziere mit .
Schritt 18.2
Subtrahiere von .
Schritt 19
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 20
Schritt 20.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 20.2
Vereinfache das Ergebnis.
Schritt 20.2.1
Vereinfache jeden Term.
Schritt 20.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 20.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 20.2.1.3
Mutltipliziere mit .
Schritt 20.2.2
Subtrahiere von .
Schritt 20.2.3
Die endgültige Lösung ist .
Schritt 21
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Minimum
Schritt 22