Analysis Beispiele

Finde die lokalen Maxima und Minima x^2-x- natürlicher Logarithmus von x
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.4
Stelle die Terme um.
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3.2
Schreibe als um.
Schritt 3.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.5
Mutltipliziere mit .
Schritt 3.3.6
Mutltipliziere mit .
Schritt 3.3.7
Mutltipliziere mit .
Schritt 3.3.8
Addiere und .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.5.2
Addiere und .
Schritt 3.5.3
Stelle die Terme um.
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Die Ableitung von nach ist .
Schritt 5.1.4
Stelle die Terme um.
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 6.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 6.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Multipliziere jeden Term in mit .
Schritt 6.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.1.1
Bewege .
Schritt 6.3.2.1.1.2
Mutltipliziere mit .
Schritt 6.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.1.2.3
Forme den Ausdruck um.
Schritt 6.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Mutltipliziere mit .
Schritt 6.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.1
Stelle die Terme um.
Schritt 6.4.1.2
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.2.1
Faktorisiere aus heraus.
Schritt 6.4.1.2.2
Schreibe um als plus
Schritt 6.4.1.2.3
Wende das Distributivgesetz an.
Schritt 6.4.1.2.4
Mutltipliziere mit .
Schritt 6.4.1.3
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.3.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 6.4.1.3.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 6.4.1.4
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 6.4.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.4.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.1
Setze gleich .
Schritt 6.4.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.4.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 6.4.3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.3.2.2.2.1.2
Dividiere durch .
Schritt 6.4.3.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.4.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.4.1
Setze gleich .
Schritt 6.4.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.4.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 10.1.2
Dividiere durch .
Schritt 10.2
Addiere und .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 12.2.1.2
Mutltipliziere mit .
Schritt 12.2.1.3
Der natürliche Logarithmus von ist .
Schritt 12.2.1.4
Mutltipliziere mit .
Schritt 12.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.2.1
Subtrahiere von .
Schritt 12.2.2.2
Addiere und .
Schritt 12.2.3
Die endgültige Lösung ist .
Schritt 13
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
Schritt 14