Analysis Beispiele

Vereinfache (1-n^-2)/(1-n)
Schritt 1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Schreibe als um.
Schritt 1.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.4.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.5
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 1.4.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2
Mutltipliziere mit .
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Potenziere mit .
Schritt 3.2
Potenziere mit .
Schritt 3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4
Addiere und .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Mutltipliziere mit .
Schritt 6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Schreibe als um.
Schritt 6.3
Faktorisiere aus heraus.
Schritt 6.4
Stelle die Terme um.
Schritt 6.5
Kürze den gemeinsamen Faktor.
Schritt 6.6
Forme den Ausdruck um.
Schritt 7
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Bringe auf die linke Seite von .
Schritt 7.2
Ziehe das Minuszeichen vor den Bruch.