Analysis Beispiele

Bestimme den Definitionsbereich 1/(sin(2x))
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Der genau Wert von ist .
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Dividiere durch .
Schritt 2.4
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 2.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1.1
Mutltipliziere mit .
Schritt 2.5.1.2
Addiere und .
Schritt 2.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.1.2
Dividiere durch .
Schritt 2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.4.2
Dividiere durch .
Schritt 2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 2.8
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Aufzählende bzw. beschreibende Mengenschreibweise:
, für jede ganze Zahl
Schritt 4