Analysis Beispiele

Vereinfache 7(8/3) Quadratwurzel von 4-8/3
Schritt 1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Kombiniere und .
Schritt 1.2
Mutltipliziere mit .
Schritt 2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3
Kombiniere und .
Schritt 4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Subtrahiere von .
Schritt 6
Schreibe als um.
Schritt 7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Schreibe als um.
Schritt 7.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8
Mutltipliziere mit .
Schritt 9
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Potenziere mit .
Schritt 9.3
Potenziere mit .
Schritt 9.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.5
Addiere und .
Schritt 9.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.6.1
Benutze , um als neu zu schreiben.
Schritt 9.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.6.3
Kombiniere und .
Schritt 9.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 9.6.4.2
Forme den Ausdruck um.
Schritt 9.6.5
Berechne den Exponenten.
Schritt 10
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Mutltipliziere mit .
Schritt 10.2
Mutltipliziere mit .
Schritt 10.3
Mutltipliziere mit .
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: