Analysis Beispiele

곱의 미분 법칙을 이용하여 미분 구하기 - d/dx y=(5x^2-1)(4x+3)
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.2
Addiere und .
Schritt 4.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 6
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.2
Addiere und .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende das Distributivgesetz an.
Schritt 7.2
Wende das Distributivgesetz an.
Schritt 7.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Mutltipliziere mit .
Schritt 7.3.3
Mutltipliziere mit .
Schritt 7.3.4
Potenziere mit .
Schritt 7.3.5
Potenziere mit .
Schritt 7.3.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.3.7
Addiere und .
Schritt 7.3.8
Mutltipliziere mit .
Schritt 7.3.9
Addiere und .
Schritt 7.4
Stelle die Terme um.