Analysis Beispiele

몫의 미분 법칙을 이용하여 미분 구하기 - d/du ((2u^3+7)(3u^2-5))/(u^2+1)
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Mutltipliziere mit .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Addiere und .
Schritt 3.6.2
Bringe auf die linke Seite von .
Schritt 3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.12
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.12.1
Addiere und .
Schritt 3.12.2
Bringe auf die linke Seite von .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Wende das Distributivgesetz an.
Schritt 4.4
Wende das Distributivgesetz an.
Schritt 4.5
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Potenziere mit .
Schritt 4.5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5.4
Addiere und .
Schritt 4.5.5
Mutltipliziere mit .
Schritt 4.5.6
Mutltipliziere mit .
Schritt 4.5.7
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.7.1
Bewege .
Schritt 4.5.7.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5.7.3
Addiere und .
Schritt 4.5.8
Mutltipliziere mit .
Schritt 4.5.9
Addiere und .
Schritt 4.6
Stelle die Terme um.
Schritt 5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8
Addiere und .
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Wende das Distributivgesetz an.
Schritt 9.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.1
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 9.2.1.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.2.1.2.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.2.2.1
Bewege .
Schritt 9.2.1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.2.2.3
Addiere und .
Schritt 9.2.1.2.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.2.1.2.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.2.4.1
Bewege .
Schritt 9.2.1.2.4.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.2.4.3
Addiere und .
Schritt 9.2.1.2.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.2.1.2.6
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.2.6.1
Bewege .
Schritt 9.2.1.2.6.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.2.6.2.1
Potenziere mit .
Schritt 9.2.1.2.6.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.2.6.3
Addiere und .
Schritt 9.2.1.2.7
Mutltipliziere mit .
Schritt 9.2.1.2.8
Mutltipliziere mit .
Schritt 9.2.1.2.9
Mutltipliziere mit .
Schritt 9.2.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.3.1
Addiere und .
Schritt 9.2.1.3.2
Addiere und .
Schritt 9.2.1.4
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.2.1.5
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.5.1
Mutltipliziere mit .
Schritt 9.2.1.5.2
Mutltipliziere mit .
Schritt 9.2.1.6
Wende das Distributivgesetz an.
Schritt 9.2.1.7
Mutltipliziere mit .
Schritt 9.2.1.8
Mutltipliziere mit .
Schritt 9.2.1.9
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.9.1
Wende das Distributivgesetz an.
Schritt 9.2.1.9.2
Wende das Distributivgesetz an.
Schritt 9.2.1.9.3
Wende das Distributivgesetz an.
Schritt 9.2.1.10
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.10.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 9.2.1.10.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.10.2.1
Bewege .
Schritt 9.2.1.10.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.10.2.3
Addiere und .
Schritt 9.2.1.10.3
Mutltipliziere mit .
Schritt 9.2.1.10.4
Mutltipliziere mit .
Schritt 9.2.1.10.5
Mutltipliziere mit .
Schritt 9.2.1.10.6
Mutltipliziere mit .
Schritt 9.2.1.11
Wende das Distributivgesetz an.
Schritt 9.2.1.12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.1.1
Bewege .
Schritt 9.2.1.12.1.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.1.2.1
Potenziere mit .
Schritt 9.2.1.12.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.12.1.3
Addiere und .
Schritt 9.2.1.12.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.2.1
Bewege .
Schritt 9.2.1.12.2.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.2.2.1
Potenziere mit .
Schritt 9.2.1.12.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.12.2.3
Addiere und .
Schritt 9.2.1.12.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.3.1
Bewege .
Schritt 9.2.1.12.3.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1.12.3.2.1
Potenziere mit .
Schritt 9.2.1.12.3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 9.2.1.12.3.3
Addiere und .
Schritt 9.2.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.1
Subtrahiere von .
Schritt 9.2.2.2
Addiere und .
Schritt 9.2.3
Subtrahiere von .
Schritt 9.2.4
Addiere und .
Schritt 9.3
Stelle die Terme um.
Schritt 9.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.4.1
Faktorisiere aus heraus.
Schritt 9.4.2
Faktorisiere aus heraus.
Schritt 9.4.3
Faktorisiere aus heraus.
Schritt 9.4.4
Faktorisiere aus heraus.
Schritt 9.4.5
Faktorisiere aus heraus.
Schritt 9.4.6
Faktorisiere aus heraus.
Schritt 9.4.7
Faktorisiere aus heraus.