Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Diese Ableitung konnte mithilfe der Produktregel nicht vervollständigt werden. Mathway wird eine andere Methode benutzen.
Schritt 2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Schreibe als um.
Schritt 3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Ersetze alle durch .
Schritt 3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.6
Multipliziere die Exponenten in .
Schritt 3.6.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.6.2
Kürze den gemeinsamen Faktor von .
Schritt 3.6.2.1
Faktorisiere aus heraus.
Schritt 3.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.3
Forme den Ausdruck um.
Schritt 3.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.8
Kombiniere und .
Schritt 3.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.10
Vereinfache den Zähler.
Schritt 3.10.1
Mutltipliziere mit .
Schritt 3.10.2
Subtrahiere von .
Schritt 3.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.12
Kombiniere und .
Schritt 3.13
Kombiniere und .
Schritt 3.14
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.14.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.14.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.14.3
Kombiniere und .
Schritt 3.14.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.14.5
Vereinfache den Zähler.
Schritt 3.14.5.1
Mutltipliziere mit .
Schritt 3.14.5.2
Subtrahiere von .
Schritt 3.14.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.15
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.16
Mutltipliziere mit .
Schritt 3.17
Kombiniere und .
Schritt 3.18
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Schritt 4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Mutltipliziere mit .
Schritt 5
Schritt 5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.3
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Stelle die Terme um.
Schritt 6.2
Vereinfache jeden Term.
Schritt 6.2.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6.2.2
Kombiniere und .
Schritt 6.2.3
Faktorisiere aus heraus.
Schritt 6.2.4
Faktorisiere aus heraus.
Schritt 6.2.5
Separiere Brüche.
Schritt 6.2.6
Dividiere durch .
Schritt 6.2.7
Kombiniere und .