Analysis Beispiele

연쇄 법칙을 사용하여 미분 구하기 - d/dt 7e^(-0.2t)(1-0.2t)
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3
Addiere und .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Mutltipliziere mit .
Schritt 3.6.2
Bringe auf die linke Seite von .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.3
Ersetze alle durch .
Schritt 5
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Mutltipliziere mit .
Schritt 5.3.2
Bringe auf die linke Seite von .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Wende das Distributivgesetz an.
Schritt 6.3
Wende das Distributivgesetz an.
Schritt 6.4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Mutltipliziere mit .
Schritt 6.4.2
Mutltipliziere mit .
Schritt 6.4.3
Mutltipliziere mit .
Schritt 6.4.4
Mutltipliziere mit .
Schritt 6.4.5
Mutltipliziere mit .
Schritt 6.4.6
Subtrahiere von .
Schritt 6.5
Stelle die Terme um.
Schritt 6.6
Stelle die Faktoren in um.