Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Schreibe als um.
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.7
Addiere und .
Schritt 2.8
Mutltipliziere mit .
Schritt 2.9
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.2
Vereine die Terme
Schritt 3.2.1
Kombiniere und .
Schritt 3.2.2
Addiere und .