Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Kombiniere und .
Schritt 1.2
Kombiniere und .
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Schritt 3.1
Es sei . Ermittle .
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.1.5
Addiere und .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Bringe auf die linke Seite von .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Schritt 6.1
Kombiniere und .
Schritt 6.2
Wende die grundlegenden Potenzregeln an.
Schritt 6.2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 6.2.2
Multipliziere die Exponenten in .
Schritt 6.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.2.2.2
Multipliziere .
Schritt 6.2.2.2.1
Kombiniere und .
Schritt 6.2.2.2.2
Mutltipliziere mit .
Schritt 6.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Schritt 8.1
Schreibe als um.
Schritt 8.2
Vereinfache.
Schritt 8.2.1
Kombiniere und .
Schritt 8.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 8.2.3
Mutltipliziere mit .
Schritt 8.2.4
Bringe auf die linke Seite von .
Schritt 8.2.5
Kürze den gemeinsamen Faktor.
Schritt 8.2.6
Forme den Ausdruck um.
Schritt 9
Ersetze alle durch .