Analysis Beispiele

미분 구하기 - d/dy ((y-2)^6)/((y^2+4y)^8)
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2
Mutltipliziere mit .
Schritt 3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Ersetze alle durch .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bringe auf die linke Seite von .
Schritt 4.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Addiere und .
Schritt 4.5.2
Mutltipliziere mit .
Schritt 5
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.3
Ersetze alle durch .
Schritt 6
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.6
Mutltipliziere mit .
Schritt 7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1.1
Faktorisiere aus heraus.
Schritt 7.1.1.2
Faktorisiere aus heraus.
Schritt 7.1.1.3
Faktorisiere aus heraus.
Schritt 7.1.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.2.1
Faktorisiere aus heraus.
Schritt 7.1.2.2
Faktorisiere aus heraus.
Schritt 7.1.2.3
Faktorisiere aus heraus.
Schritt 7.1.3
Wende die Produktregel auf an.
Schritt 7.1.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.1
Wende das Distributivgesetz an.
Schritt 7.1.4.2
Mutltipliziere mit .
Schritt 7.1.4.3
Wende das Distributivgesetz an.
Schritt 7.1.4.4
Mutltipliziere mit .
Schritt 7.1.4.5
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.5.1
Wende das Distributivgesetz an.
Schritt 7.1.4.5.2
Wende das Distributivgesetz an.
Schritt 7.1.4.5.3
Wende das Distributivgesetz an.
Schritt 7.1.4.6
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.6.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.6.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 7.1.4.6.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.4.6.1.2.1
Bewege .
Schritt 7.1.4.6.1.2.2
Mutltipliziere mit .
Schritt 7.1.4.6.1.3
Mutltipliziere mit .
Schritt 7.1.4.6.1.4
Mutltipliziere mit .
Schritt 7.1.4.6.1.5
Mutltipliziere mit .
Schritt 7.1.4.6.1.6
Mutltipliziere mit .
Schritt 7.1.4.6.2
Addiere und .
Schritt 7.1.4.6.3
Addiere und .
Schritt 7.1.5
Subtrahiere von .
Schritt 7.1.6
Faktorisiere durch Gruppieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.6.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.6.1.1
Faktorisiere aus heraus.
Schritt 7.1.6.1.2
Schreibe um als plus
Schritt 7.1.6.1.3
Wende das Distributivgesetz an.
Schritt 7.1.6.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.6.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 7.1.6.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 7.1.6.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 7.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Faktorisiere aus heraus.
Schritt 7.2.1.2
Faktorisiere aus heraus.
Schritt 7.2.1.3
Faktorisiere aus heraus.
Schritt 7.2.2
Wende die Produktregel auf an.
Schritt 7.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Faktorisiere aus heraus.
Schritt 7.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Faktorisiere aus heraus.
Schritt 7.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.3
Forme den Ausdruck um.
Schritt 7.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Faktorisiere aus heraus.
Schritt 7.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.2.1
Faktorisiere aus heraus.
Schritt 7.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.4.2.3
Forme den Ausdruck um.
Schritt 7.5
Faktorisiere aus heraus.
Schritt 7.6
Schreibe als um.
Schritt 7.7
Faktorisiere aus heraus.
Schritt 7.8
Schreibe als um.
Schritt 7.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 7.10
Stelle die Faktoren in um.