Analysis Beispiele

미분 구하기 - d/dx y=5x^(8/5)-3x^(5/6)+x^(1/3)+5
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Kombiniere und .
Schritt 2.8
Kombiniere und .
Schritt 2.9
Mutltipliziere mit .
Schritt 2.10
Faktorisiere aus heraus.
Schritt 2.11
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.11.1
Faktorisiere aus heraus.
Schritt 2.11.2
Kürze den gemeinsamen Faktor.
Schritt 2.11.3
Forme den Ausdruck um.
Schritt 2.11.4
Dividiere durch .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Mutltipliziere mit .
Schritt 3.6.2
Subtrahiere von .
Schritt 3.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.8
Kombiniere und .
Schritt 3.9
Kombiniere und .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 3.12
Faktorisiere aus heraus.
Schritt 3.13
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.13.1
Faktorisiere aus heraus.
Schritt 3.13.2
Kürze den gemeinsamen Faktor.
Schritt 3.13.3
Forme den Ausdruck um.
Schritt 3.14
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3
Kombiniere und .
Schritt 4.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Subtrahiere von .
Schritt 4.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Mutltipliziere mit .
Schritt 6.2.2
Addiere und .
Schritt 6.3
Stelle die Terme um.