Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Die Ableitung von nach ist .
Schritt 3.4
Mutltipliziere mit .
Schritt 3.5
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Stelle die Terme um.
Schritt 4.2
Vereinfache jeden Term.
Schritt 4.2.1
Stelle und um.
Schritt 4.2.2
Stelle und um.
Schritt 4.2.3
Wende die Doppelwinkelfunktion für den Sinus an.