Analysis Beispiele

미분 구하기 - d/dx y=sin(2x)cos(2x)
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Potenziere mit .
Schritt 4
Potenziere mit .
Schritt 5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Addiere und .
Schritt 6.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.5
Mutltipliziere mit .
Schritt 7
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 7.2
Die Ableitung von nach ist .
Schritt 7.3
Ersetze alle durch .
Schritt 8
Potenziere mit .
Schritt 9
Potenziere mit .
Schritt 10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 11
Addiere und .
Schritt 12
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 13
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 14
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Mutltipliziere mit .
Schritt 14.2
Bringe auf die linke Seite von .