Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Schritt 3.1
Kombiniere und .
Schritt 3.2
Vereinfache Terme.
Schritt 3.2.1
Mutltipliziere mit .
Schritt 3.2.2
Kombiniere und .
Schritt 3.2.3
Bringe auf die linke Seite von .
Schritt 3.2.4
Kürze den gemeinsamen Teiler von und .
Schritt 3.2.4.1
Faktorisiere aus heraus.
Schritt 3.2.4.2
Kürze die gemeinsamen Faktoren.
Schritt 3.2.4.2.1
Faktorisiere aus heraus.
Schritt 3.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2.3
Forme den Ausdruck um.
Schritt 3.2.4.2.4
Dividiere durch .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Addiere und .
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.9
Mutltipliziere mit .