Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Bringe auf die linke Seite von .
Schritt 2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Addiere und .
Schritt 2.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.7
Multipliziere.
Schritt 2.7.1
Mutltipliziere mit .
Schritt 2.7.2
Mutltipliziere mit .
Schritt 2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Schritt 3.1
Bewege .
Schritt 3.2
Mutltipliziere mit .
Schritt 3.2.1
Potenziere mit .
Schritt 3.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3
Addiere und .
Schritt 4
Bringe auf die linke Seite von .
Schritt 5
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Vereinfache den Zähler.
Schritt 5.3.1
Vereinfache jeden Term.
Schritt 5.3.1.1
Mutltipliziere mit .
Schritt 5.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.3.1.2.1
Bewege .
Schritt 5.3.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3.1.2.3
Addiere und .
Schritt 5.3.1.3
Mutltipliziere mit .
Schritt 5.3.2
Addiere und .
Schritt 5.4
Stelle die Terme um.
Schritt 5.5
Faktorisiere aus heraus.
Schritt 5.5.1
Faktorisiere aus heraus.
Schritt 5.5.2
Faktorisiere aus heraus.
Schritt 5.5.3
Faktorisiere aus heraus.
Schritt 5.6
Vereinfache den Nenner.
Schritt 5.6.1
Schreibe als um.
Schritt 5.6.2
Stelle und um.
Schritt 5.6.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5.6.4
Wende die Produktregel auf an.
Schritt 5.7
Faktorisiere aus heraus.
Schritt 5.8
Schreibe als um.
Schritt 5.9
Faktorisiere aus heraus.
Schritt 5.10
Schreibe als um.
Schritt 5.11
Ziehe das Minuszeichen vor den Bruch.