Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.4
Kombiniere Brüche.
Schritt 4.4.1
Addiere und .
Schritt 4.4.2
Mutltipliziere mit .
Schritt 4.4.3
Kombiniere und .
Schritt 5
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Vereinfache den Zähler.
Schritt 5.3.1
Vereinfache jeden Term.
Schritt 5.3.1.1
Mutltipliziere mit .
Schritt 5.3.1.2
Mutltipliziere mit .
Schritt 5.3.2
Stelle die Faktoren in um.
Schritt 5.4
Stelle die Terme um.
Schritt 5.5
Vereinfache den Zähler.
Schritt 5.5.1
Faktorisiere aus heraus.
Schritt 5.5.1.1
Faktorisiere aus heraus.
Schritt 5.5.1.2
Faktorisiere aus heraus.
Schritt 5.5.1.3
Faktorisiere aus heraus.
Schritt 5.5.1.4
Faktorisiere aus heraus.
Schritt 5.5.1.5
Faktorisiere aus heraus.
Schritt 5.5.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 5.5.2.1
Schreibe als um.
Schritt 5.5.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 5.5.2.3
Schreibe das Polynom neu.
Schritt 5.5.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .