Analysis Beispiele

미분 구하기 - d/dx g(x)=((5x)/((x^3-6)^2))
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.1.2
Mutltipliziere mit .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Ersetze alle durch .
Schritt 5
Vereinfache durch Herausfaktorisieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 6
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze den gemeinsamen Faktor.
Schritt 6.3
Forme den Ausdruck um.
Schritt 7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 10
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Addiere und .
Schritt 10.2
Mutltipliziere mit .
Schritt 11
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Bewege .
Schritt 11.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Potenziere mit .
Schritt 11.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 11.3
Addiere und .
Schritt 12
Subtrahiere von .
Schritt 13
Kombiniere und .
Schritt 14
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Wende das Distributivgesetz an.
Schritt 14.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Mutltipliziere mit .
Schritt 14.2.2
Mutltipliziere mit .
Schritt 14.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.3.1
Faktorisiere aus heraus.
Schritt 14.3.2
Faktorisiere aus heraus.
Schritt 14.3.3
Faktorisiere aus heraus.
Schritt 14.4
Faktorisiere aus heraus.
Schritt 14.5
Schreibe als um.
Schritt 14.6
Faktorisiere aus heraus.
Schritt 14.7
Schreibe als um.
Schritt 14.8
Ziehe das Minuszeichen vor den Bruch.