Analysis Beispiele

미분 구하기 - d/dx y=(x^3+1) natürlicher Logarithmus von x^3+1
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Addiere und .
Schritt 3.4.2
Kombiniere und .
Schritt 3.4.3
Kombiniere und .
Schritt 3.4.4
Bringe auf die linke Seite von .
Schritt 3.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.8
Addiere und .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Stelle die Terme um.
Schritt 4.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Schreibe als um.
Schritt 4.2.1.2
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Summe kubischer Terme, , wobei und .
Schritt 4.2.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.3.1
Mutltipliziere mit .
Schritt 4.2.1.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.2.2
Mutltipliziere mit .
Schritt 4.2.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Schreibe als um.
Schritt 4.2.3.2
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Summe kubischer Terme, , wobei und .
Schritt 4.2.3.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.3.1
Mutltipliziere mit .
Schritt 4.2.3.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2
Forme den Ausdruck um.
Schritt 4.2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.5.2
Dividiere durch .