Analysis Beispiele

미분 구하기 - d/dx f(x)=3x^2e^(4x+1)
Schritt 1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3
Ersetze alle durch .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Addiere und .
Schritt 4.6.2
Bringe auf die linke Seite von .
Schritt 4.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Mutltipliziere mit .
Schritt 5.3
Stelle die Terme um.
Schritt 5.4
Stelle die Faktoren in um.